

CIE A-Level Physics 17 - Electric Fields Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define electric field.

Define electric field.

A region of space in which charged particles are subject to an electrostatic force.

What type of field do point charges have?

What type of field do point charges have?

Radial fields.

How can you model uniformly charged spheres?

How can you model uniformly charged spheres?

As a point charge at the centre of the sphere.

What do field lines show?

What do field lines show?

The path a positive test charge would take when placed in an electric field.

Which direction do the field lines point?

Which direction do the field lines point?

Positive to negative – the lines always point away from a positive charge and towards a negative charge.

What effect does distance have on the strength of the electrostatic force?

What effect does distance have on the strength of the electrostatic force?

The greater the distance, the weaker the force.

How is the strength of an electric field represented in a diagram?

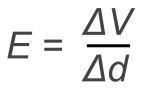
How is the strength of an electric field represented in a diagram?

By how close together the field lines are – the closer the lines, the stronger the field.

Define electric field strength.

Define electric field strength.

Force per unit charge on a positive test charge placed in the field.


What is the formula for electric field strength for a uniform field?

What is the formula for electric field strength for a uniform field?

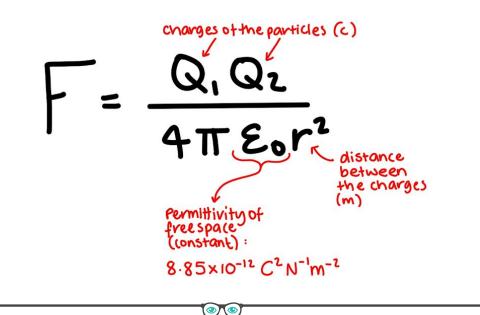
What is Coulomb's Law?

What is Coulomb's Law?

The force between any two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

D PMTEducation

www.pmt.education

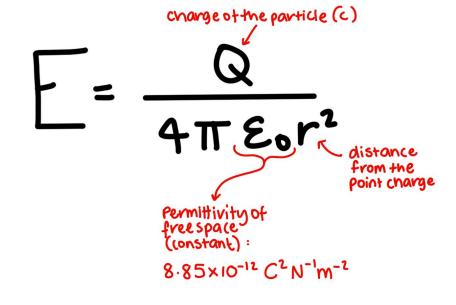

What is the formula for the force between two point charges? (Coulomb's Law)

What is the formula for the force between two point charges? (Coulomb's Law)

Define permittivity.

Define permittivity.

The ability of a material to transmit an electric field (how easily the atoms become polarised).


What is the formula for the electric field strength of a point charge?

What is the formula for the electric field strength of a point charge?

This can be derived

using $E = F \div Q$ and

the formula for force

(Coulomb's Law).

DOG PMTEducation

What is the formula for the work done when moving a charge in an electric field?

What is the formula for the work done when moving a charge in an electric field?

Work done = Force x Distance moved

Define potential at a point in an electric field.

Define potential at a point in an electric field.

The work done per unit charge in moving a positive test charge from infinity to that point in the electric field.

What is the formula for the potential at a point in an electric field?

What is the formula for the potential at a point in an electric field?

V = W / Q

V = Potential (V)

W = Work done in moving the particle (J)

What is the formula for the potential between two parallel plates?

What is the formula for the potential between two parallel plates?

$$V = E \times d$$

V = Potential (V)

E = Electric Field strength (NC⁻¹)

d = distance between the plates (m)

What can the motion of charged particles in an electric field be modelled as?

What can the motion of charged particles in an electric field be modelled as?

Projectile motion: the two components of velocity are independent of each other.

The velocity perpendicular to the field is not affected, whereas the velocity parallel to the field is.

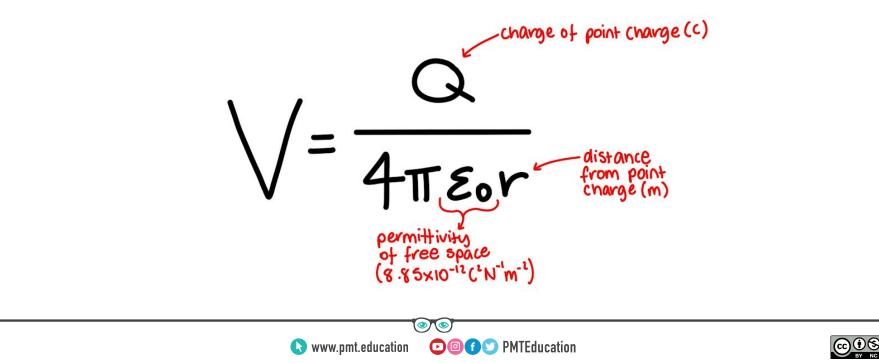
www.pmt.education

How do you calculate the parallel component of velocity for a charged particle in a uniform electric field?

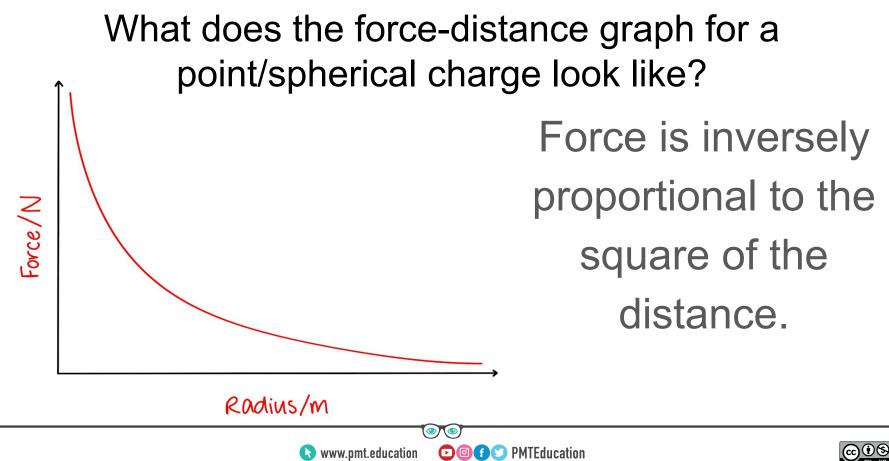
How do you calculate the parallel component of velocity for a charged particle in a uniform electric field?

- Calculate the time the particle is in the field (using time = distance ÷ speed, where distance = length of charged plates and speed = velocity perpendicular to the field).
- 2. Use $a = F \div m$ and F = Eq to calculate the acceleration of the particle while it is in the field (a = Eq ÷ m).
- 3. Substitute these values into V = u + at, where u is the initial parallel velocity and V is the final parallel velocity.

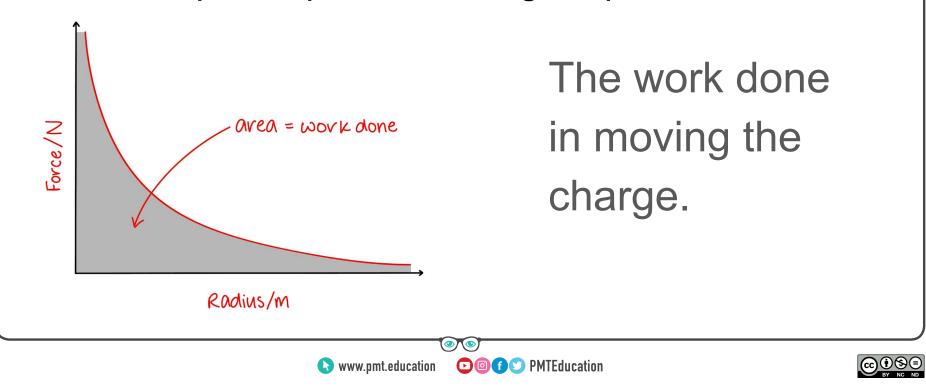
🖸 👔 💟 PMTEducation


What is the formula for the potential near a point charge? (Coulomb's Law)

What is the formula for the potential near a point charge? (Coulomb's Law)



What does the force-distance graph for a point/spherical charge look like?


What does the area under a force-distance graph for a point/spherical charge represent?

What does the area under a force-distance graph for a point/spherical charge represent?

What is the formula for electric potential energy near a point charge?

What is the formula for electric potential energy near a point charge?

$$E = V x q$$

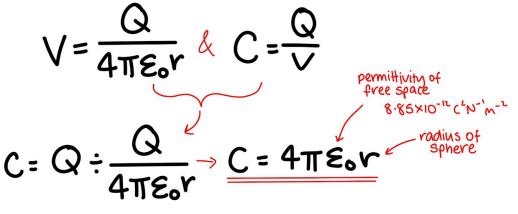
E = electric potential energy (J)

V = potential (V)

q = charge of the point charge (C)

What is the formula for the capacitance of an isolated sphere?

What is the formula for the capacitance of an isolated sphere?


Isolated spheres can store charge, so technically they can be classed as capacitors.

Using $C = Q \div V$ and the

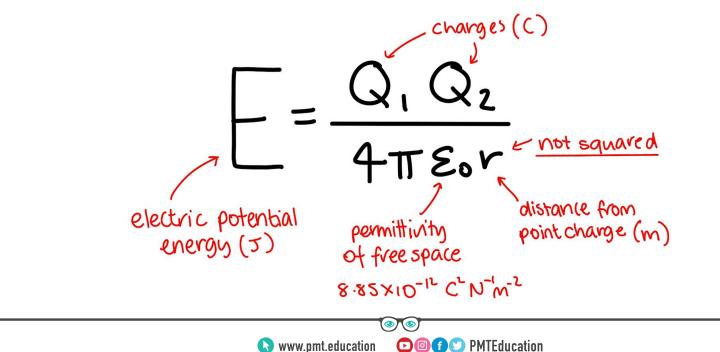
formula for V (in terms of

Coulomb's law), you can derive the formula for

capacitance:

D

Of States PMTEducation


What is the formula for electric potential energy near a point charge? (Coulomb's Law)

What is the formula for electric potential energy near a point charge? (Coulomb's Law)

